学習塾 ソアラ: 八王子 恩方地区(西寺方、上恩方、下恩方、小津町、川町)にある少人数個別指導学習塾
トップページ > 教材アーカイブス > 算数・数学 > 問題 > 幾何 > 三角形 > チェバの定理

チェバの定理  

2016年第57回国際数学オリンピック香港大会記念切手小型シート

この切手シートは、2016年第57回国際数学オリンピック香港大会を記念して香港郵政が発行したものです(下記参照)。

右側のカラフルな三角形が問題の図になります。

問題  

$\triangle ABC$ の各辺 $AB$、$BC$、$CA$ 上にそれぞれ点 $Z$、$X$、$Y$ をとる。 3つの線分 $AX$、$BY$、$CZ$ が1点 $O$ で交わるとき、

$$\frac{AZ}{ZB}\cdot\frac{BX}{XC}\cdot\frac{CY}{YA} = 1$$

である。


この定理を使っても重心が存在することを示せますね。 2点、例えば $X$ と $Y$ が中点なら $Z$ も中点になりますから、交点 $O$ は重心です。


左側の円形切手の印章は2010年第51回国際数学オリンピックカザフスタン大会において出題された問題(問2)のものです。 香港郵政によると香港発の幾何学定理とのことです。

切手の紹介(イントロダクションのページをそのまま引用)

57th International Mathematical Olympiad 2016 Special Stamps

Date of Issue: 6 July 2016

The 57th International Mathematical Olympiad (IMO), to be held in Hong Kong from 6 to 16 July 2016, is hosted by the International Mathematical Olympiad Hong Kong Committee (IMOHKC) with the Hong Kong University of Science and Technology as the Host University and the Education Bureau as the Supporting Organisation. More than 100 teams from all over the world will compete in this year’s contest. To mark this major mathematical event, Hongkong Post issues a stamp sheetlet on this theme.

The IMO is a competition for secondary school students. The event, held annually in a different country or territory, provides an opportunity for exchange among youngsters from around the world who are under the age of 20 and gifted in mathematics, and nurtures students’ interest in mathematics. The IMOHKC was founded in 1986. In collaboration with the Education Bureau and the Hong Kong Academy for Gifted Education, the committee voluntarily provides talented local students with mathematical Olympiad training and other learning opportunities. Hong Kong has been participating in the IMO since 1988, with the six representing contestants handpicked annually by the IMOHKC among the students attending training courses.

The stamp sheetlet features an illustration of Ceva’s Theorem, a tool frequently used in mathematics to solve problems in geometry. The stamp is circular in shape and shows a geometric problem formulated by Hong Kong, which was adopted as one of the questions in the 2010 IMO.

Acknowledgement: International Mathematical Olympiad Hong Kong Committee

2010年第51回国際数学オリンピックカザフスタン大会(問題2)

三角形 $ABC$ の内心を $I$ とし、外接円を $\Gamma$ とする。直線 $EI$ が円 $\Gamma$ と再び交わる点を $D$ とする。点 $E$ は弧 $BDC$ 上、点 $F$ は辺 $BC$ 上にあり、次をみたす:

$$ \angle BAF = \angle CAE < \frac{1}{2} \angle BAC $$

線分 $IF $の中点を $G$ とする。このとき、直線 $DG$ と直線 $EI$ は円 $\Gamma$ 上で交わることを示せ。

References


Tag: 教材 算数 数学 問題 幾何学 図形 三角形 中学 高校


添付ファイル: file2016IMO_HKC.jpg 213件 [詳細]

Last-modified: 2016-09-29 (木) 15:12:16 (1822d)