学習塾 ソアラ: 八王子 恩方地区(西寺方、上恩方、下恩方、小津町、川町)にある少人数個別指導学習塾
トップページ > 教材アーカイブス > 算数・数学 > 問題 > 幾何 > 立体図形 > 四角錐001 > 解答例

説明例  

四角錐の場合を考えてみよう。

立方体の中には各面を底面、立方体の中心を頂点として6個の合同な四角錐がある。 この四角錐の体積 $V$ は立方体の一辺の長さを $L$ とすれば $$V = \frac{1}{6} \times L^3$$ とかける。 四角錐の底面の面積を $S = L^2$、高さを $h = \frac{1}{2}L$ とおけば、結局、 $$V = \frac{1}{3} \times S \times h$$ となる。 あとは底面の形や高さを適当に変形することで一般の四角錐にできる。 さらには分割して三角錐にもあてはめることができる。


さて、円錐はどうすればいいですかね。

本当は積分でも使うといいですね。 そうすれば $\frac{1}{3}$ の $3$ には空間の次元が反映している事も言えるのですが。


Last-modified: 2016-11-19 (土) 20:38:10 (1774d)